Eigenfunctions and Fundamental Solutions of the Fractional Two-Parameter Laplacian

نویسنده

  • Semyon B. Yakubovich
چکیده

We deal with the following fractional generalization of the Laplace equation for rectangular domains x, y ∈ x0, X0 × y0, Y0 ⊂ R × R , which is associated with the Riemann-Liouville fractional derivativesΔu x, y λu x, y ,Δ : D1 α x0 D 1 β y0 , where λ ∈ C, α, β ∈ 0, 1 × 0, 1 . Reducing the left-hand side of this equation to the sum of fractional integrals by x and y, we then use the operational technique for the conventional right-sided Laplace transformation and its extension to generalized functions to describe a complete family of eigenfunctions and fundamental solutions of the operator Δ in classes of functions represented by the left-sided fractional integral of a summable function or just admitting a summable fractional derivative. A symbolic operational form of the solutions in terms of the Mittag-Leffler functions is exhibited. The case of the separation of variables is also considered. An analog of the fractional logarithmic solution is presented. Classical particular cases of solutions are demonstrated.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence solutions for new p-Laplacian fractional boundary value problem with impulsive effects

Fractional differential equations have been of great interest recently. This is because of both the intensive development of the theory of fractional calculus itself and the applications of such constructions in various scientific fields such as physics, mechanics, chemistry, engineering, etc. Differential equations with impulsive effects arising from the real world describe the dyn...

متن کامل

Existence and uniqueness of solutions for p-laplacian fractional order boundary value problems

In this paper, we study sufficient conditions for existence and uniqueness of solutions of three point boundary vale problem for p-Laplacian fractional order differential equations. We use Schauder's fixed point theorem for existence of solutions and concavity of the operator for uniqueness of solution. We include some examples to show the applicability of our results.

متن کامل

Computing Fractional Laplacians on Complex-Geometry Domains: Algorithms and Simulations

Abstract. We consider a fractional Laplacian defined in bounded domains by the eigendecomposition of the integer-order Laplacian, and demonstrate how to compute very accurately (using the spectral element method) the eigenspectrum and corresponding eigenfunctions in twodimensional prototype complex-geometry domains. We then employ these eigenfunctions as trial and test bases to first solve the ...

متن کامل

On Generalization of Sturm-Liouville Theory for Fractional Bessel Operator

In this paper, we give the spectral theory for eigenvalues and eigenfunctions of a boundary value problem consisting of the linear fractional Bessel operator. Moreover, we show that this operator is self-adjoint, the eigenvalues of the problem are real, and the corresponding eigenfunctions are orthogonal. In this paper, we give the spectral theory for eigenvalues and eigenfunctions...

متن کامل

Existence/uniqueness of solutions to Heat equation in extended Colombeau algebra

This work concerns the study of existence and uniqueness to heat equation with fractional Laplacian dierentiation in extended Colombeau algebra.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Int. J. Math. Mathematical Sciences

دوره 2010  شماره 

صفحات  -

تاریخ انتشار 2010